Exercise 46

Use logarithmic differentiation to find the derivative of the function.

$$
y=\sqrt{x}^{x}
$$

Solution

Take the natural logarithm of both sides and use the properties of logarithms to simplify the right side.

$$
\begin{aligned}
\ln y & =\ln \sqrt{x}^{x} \\
& =x \ln \sqrt{x} \\
& =x \ln x^{1 / 2} \\
& =\frac{x}{2} \ln x
\end{aligned}
$$

Differentiate both sides with respect to x.

$$
\begin{aligned}
\frac{d}{d x}(\ln y) & =\frac{d}{d x}\left(\frac{x}{2} \ln x\right) \\
\frac{1}{y} \cdot \frac{d}{d x}(y) & =\left[\frac{d}{d x}\left(\frac{x}{2}\right)\right] \ln x+\frac{x}{2}\left[\frac{d}{d x}(\ln x)\right] \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\left(\frac{1}{2}\right) \ln x+\frac{x}{2}\left(\frac{1}{x}\right) \\
\frac{1}{y} \frac{d y}{d x} & =\frac{\ln x}{2}+\frac{1}{2} \\
\frac{d y}{d x} & =y\left(\frac{\ln x+1}{2}\right) \\
& =\sqrt{x}^{x}\left(\frac{\ln x+1}{2}\right) \\
& =\left(x^{1 / 2}\right)^{x}\left(\frac{\ln x+1}{2}\right) \\
& =x^{x / 2}\left(\frac{\ln x+1}{2}\right) \\
& =\frac{x^{x / 2}}{2}(\ln x+1)
\end{aligned}
$$

